Cryptic variation in vulva development by cis-regulatory evolution of a HAIRY-binding site.

نویسندگان

  • Simone Kienle
  • Ralf J Sommer
چکیده

Robustness to mutations is a general principle of biological systems that allows for the accumulation of cryptic variation. However, little is known about robustness and cryptic variation in core developmental pathways. Here we show through gonad-ablation screens in natural isolates of Pristionchus pacificus cryptic variation in nematode vulva development. This variation is mainly caused by cis-regulatory evolution in the conserved Notch ligand apx-1/Delta and involves binding sites for the transcription factor HAIRY. In some isolates, including a Bolivian strain, absence of a HAIRY-binding site results in Ppa-apx-1 expression in the vulva precursor cell P6.p and causes gonad-independent vulva differentiation. In contrast, a Californian strain that gained a HAIRY-binding site lacks Ppa-apx-1 vulval expression and shows gonad-dependence of vulva development. Addition of this HAIRY-binding site to the Bolivian Ppa-apx-1 promoter eliminates expression in the vulva. Our findings indicate significant cis-regulatory evolution in a core developmental pathway leading to intraspecific cryptic variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is Transcription Factor Binding Site Turnover a Sufficient Explanation for Cis-Regulatory Sequence Divergence?

The molecular evolution of cis-regulatory sequences is not well understood. Comparisons of closely related species show that cis-regulatory sequences contain a large number of sites constrained by purifying selection. In contrast, there are a number of examples from distantly related species where cis-regulatory sequences retain little to no sequence similarity but drive similar patterns of gen...

متن کامل

HAIRY-like Transcription Factors and the Evolution of the Nematode Vulva Equivalence Group

BACKGROUND Nematode vulva formation provides a paradigm to study the evolution of pattern formation and cell-fate specification. The Caenorhabditis elegans vulva is generated from three of six equipotent cells that form the so-called vulva equivalence group. During evolution, the size of the vulva equivalence group has changed: Panagrellus redivivus has eight, C. elegans six, and Pristionchus p...

متن کامل

Genome-wide errant targeting by Hairy

Metazoan transcriptional repressors regulate chromatin through diverse histone modifications. Contributions of individual factors to the chromatin landscape in development is difficult to establish, as global surveys reflect multiple changes in regulators. Therefore, we studied the conserved Hairy/Enhancer of Split family repressor Hairy, analyzing histone marks and gene expression in Drosophil...

متن کامل

Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. V Edwards. 2013. Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch (Carpodacus mexicanus). Ecology and Evolution 3(3): 655-666. Cis-regulatory sequence variation and association with Mycoplasma load in natural...

متن کامل

Frequent Gain and Loss of Functional Transcription Factor Binding Sites

Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory code. The identification of functional divergence in cis-regulatory sequences is therefore important for both understanding the role of gene regulation in evolution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013